

Timestamp of the last model used by worker p

- $l_{\mathcal{D}}$ Model (parameter vector) at epoch t \boldsymbol{x}_t Learning rate at epoch t γ_t
- Each gradient is a tuple $[\boldsymbol{g}_p, l]$ denoting that g_p a worker p computed the gradient \boldsymbol{g}_p w.r.t \boldsymbol{x}_l
- Set of gradients that the server receives in epoch t
- Staleness value for a gradient $[\boldsymbol{g}, l]$ at epoch t τ_{tl} $(\tau_{tl} \triangleq k - l)$
- Mini-batch of training examples

4. Kardam

• Byzantine resilience against f/n workers, f <= n/3

$$\frac{n-2f}{n-f} \le SL \le \frac{n-f}{n}$$

$$\boldsymbol{x}_{t+1} = \boldsymbol{x}_t - \gamma_t \sum_{[\boldsymbol{G}(\boldsymbol{x}_l; \boldsymbol{\xi}_m), l] \in \boldsymbol{\mathcal{G}}_t} \Lambda(\tau_{tl}) \cdot \boldsymbol{G}(\boldsymbol{x}_l; \boldsymbol{\xi}_m)$$

=> convergence rate bound

7. Evaluation

<u>Setup</u>

- CIEAD 100	Parameters	Input	Conv1	Pool1	Conv2	Pool2	FC1	FC2	FC3
 CIFAR-100 CNN 	Kernel size	$32 \times 32 \times 3$	$3 \times 3 \times 16$	3×3	$3 \times 3 \times 64$	4×4	384	192	100
	Strides			3×3		4×4			

• f = 3, n = 10 workers

 Baseline-ASGD: no dampening component • SSGD: ideal (synchronous) SGD • $\Lambda_1 = 1/(\tau+1), \Lambda_2 = \exp(0.5\tau), \Lambda_3 = \exp(0.2\tau)$

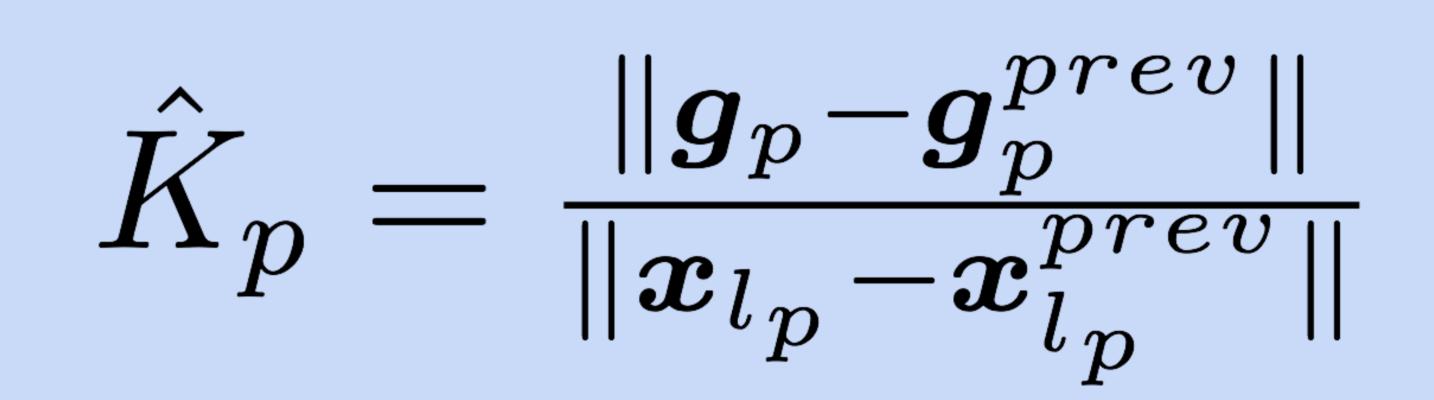
Provable (almost sure) convergence

5. Filtering component

a. Lipschitz filter empirical Lipschitz coefficient at worker p:

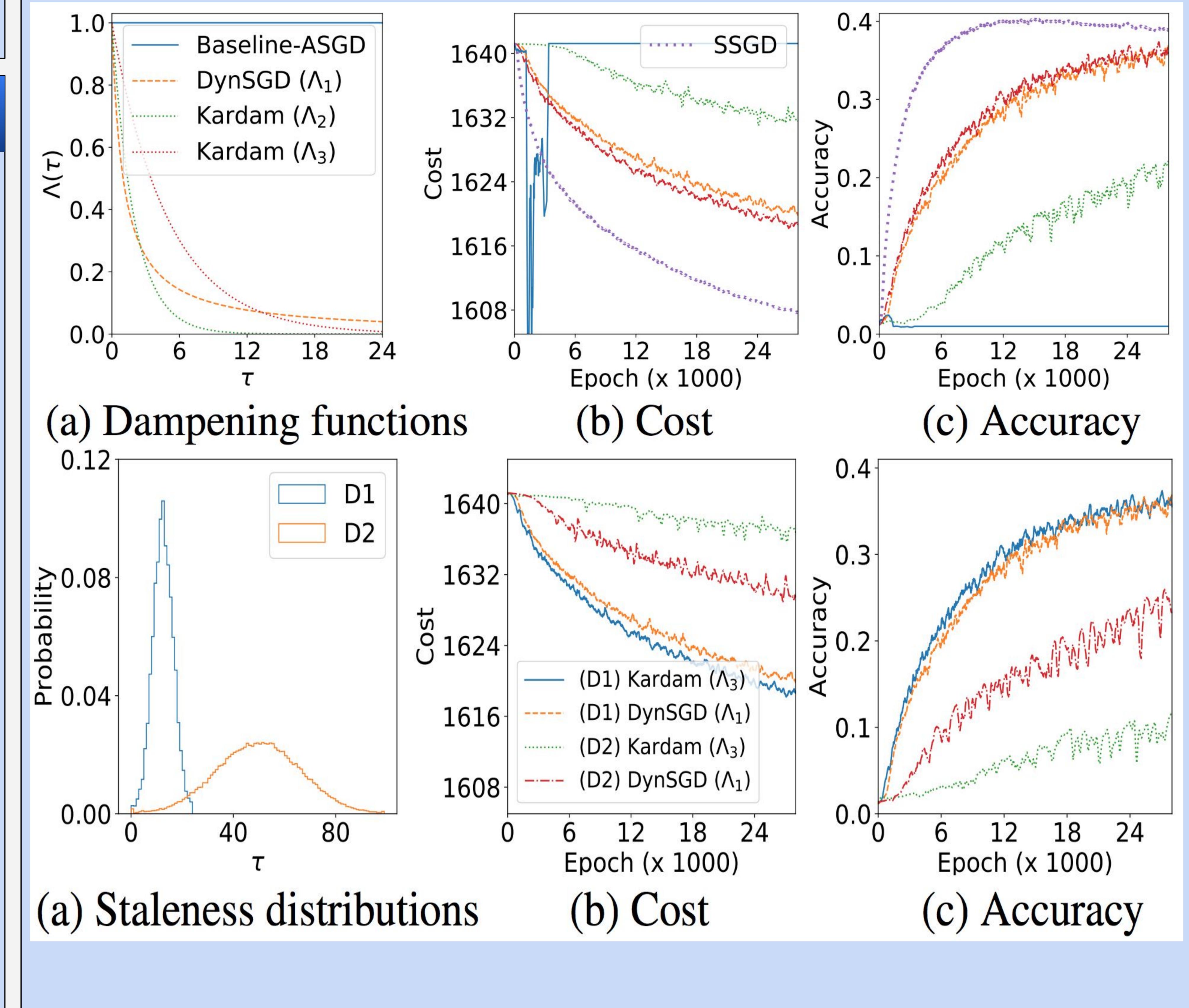
empirical Lipschitz coefficient at server after response from p:

 \sim $\boldsymbol{\wedge}$ $\tilde{K}_t^p \leq K_t \triangleq quantile_{\underline{n-f}} \{K_p\}_{p \in P}$



 $\|\boldsymbol{g}_p - \boldsymbol{g}_q\|$

 $\| \boldsymbol{x}_t - \boldsymbol{x}_{t-1} \|$



b. Frequency filter

limits the number of successive gradients from a single worker to a value of f

Slowdown

a ^ b => correct cone: $\langle \mathbb{E}_{\xi} G(x;\xi), \nabla Q(x) \rangle > \Omega((\|\nabla Q(x_t)\| - \sqrt{d}\sigma) \|\nabla Q(x_t)\|)$ $\langle \mathbb{E}_{\xi} G(x;\xi), \nabla Q(x) \rangle > \Omega((\|\nabla Q(x_t)\| - \sqrt{d}\sigma) \|\nabla Q(x_t)\|)$ $\Lambda_1: 27.9 \% \text{ filtered gradients } (D_1)$ $\Lambda_3: 19.6 \% \text{ filtered gradients } (D_1)$

Sake away

 gradient filtering => Byzantine resilience aradient dampening => Asynchronous convergence

International Conference on Machine Learning (ICML) 2018, Stockholm, Sweden